Direct Numerical Simulation of Turbulent Channel Flow on High-Performance GPU Computing System

نویسندگان

  • Giancarlo Alfonsi
  • Stefania A. Ciliberti
  • Marco Mancini
  • Leonardo Primavera
چکیده

The flow of a viscous fluid in a plane channel is simulated numerically following the DNS approach, and using a computational code for the numerical integration of the Navier-Stokes equations implemented on a hybrid CPU/GPU computing architecture (for the meaning of symbols and acronyms used, one can refer to the Nomenclature). Three turbulent-flow databases, each representing the turbulent statistically-steady state of the flow at three different values of the Reynolds number, are built up, and a number of statistical moments of the fluctuating velocity field are computed. For turbulent-flow-structure investigation, the vortex-detection technique of the imaginary part of the complex eigenvalue pair in the velocity-gradient tensor is applied to the fluctuating-velocity fields. As a result, and among other types, hairpin vortical structures are unveiled. The processes of evolution that characterize the hairpin vortices in the near-wall region of the turbulent channel are investigated, in particular at one of the three Reynolds numbers tested, with specific attention given to the relationship that exists between the dynamics of the vortical structures and the occurrence of ejection and sweep quadrant events. Interestingly, it is found that the latter events play a preminent role in the way in which the morphological evolution of a hairpin vortex develops over time, as related in particular to the establishment of symmetric and persistent hairpins. The present results have been obtained from a database that incorporates genuine DNS solutions of the Navier-Stokes equations, without superposition of any synthetic structures in the form of initial and/or boundary conditions for the simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel

In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...

متن کامل

Performances of Navier-Stokes Solver on a Hybrid CPU/GPU Computing System

A computational code for the numerical integration of the incompressible Navier-Stokes equations for the execution of accurate calculations with the approach of the Direct Numerical Simulation (DNS), is implemented on a specially-assembled hybrid CPU/GPU computing system. The computational code is based on a mixed spectral-finite difference numerical technique, and is implemented onto the plane...

متن کامل

Direct Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers

Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...

متن کامل

3D Numerical Simulation of the Separated Turbulent Shallow Flow around a Single Side Obstacle

In this paper, the performance of Reynolds Averaged Navier Stokes (RANS) simulations was evaluated to predict the flow structure developed by the presence of a sidewall obstruction in a uniform open-channel shallow flow. The study of these flow structures is important because they present in several real world configurations, such as groynes in rivers, where the erosion processes, mass transpor...

متن کامل

Parallelization and Scalability of a Spectral Element Solver

Direct numerical simulation (DNS) of turbulent flows is widely recognized to demand fine spatial meshes, small timesteps, and very long run-times to properly resolve the flow field. To overcome these limitations, most DNS is performed on supercomputing machines. With the rapid development of terascale (and, eventually, petascale) computing on thousands of processors, it has become imperative to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computation

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016